Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Parametric Simulation of Significant Design and Operating Alternatives Affecting the Fuel Economy and Emissions of Spark-Ignited Engines

1978-02-01
780943
A fundamental thermodynamic model of the complete spark-ignited, homogeneous charge engine cycle has been used in several parametric analyses to predict the effects of engine design and operating alternatives on fuel consumption and emissions of NOx and unburned hydrocarbons (HC). The simulation includes sub-models for wall heat transfer, NOx and HC emissions, and the engine breathing processes. This work demonstrates the power and utility of a comprehensive engine simulation by presenting several independent parametric studies that were carried out in response to genuine engine design and/or operating strategy questions. Included in this compilation are the effects of cycle heat loss, exhaust port heat loss, combustion duration, and charge dilution (EGR and/or lean air-fuel ratio). In addition, the influence of the design variables associated with bore-stroke ratio, intake and exhaust valve lift, and cam timing are considered.
Technical Paper

Comparison of Emission Indexes within a Turbine Combustor Operated on Diesel Fuel or Methanol

1973-02-01
730669
The emission index (grams of species per kilogram of fuel) field within a regenerative turbine combustor has been mapped using a water-cooled sampling probe. The probe employed a choked orifice to simultaneously determine the local temperature. Derived from measurements are: air-fuel ratio, combustion efficiency, average fuel velocity and fuel distribution factor. Methods of averaging the discrete data are developed. A comparison of the data obtained when the combustor was operated on each of two fuels revealed that the use of methanol leads to lower nitric oxide but higher carbon monoxide emission than does the use of diesel fuel.
Technical Paper

Ford's Second Generation New 351 4-V Engine

1970-02-01
700080
Ford Motor Company introduced a new intermediate displacement, 4V engine in several 1970 model carlines. This paper describes the planning objectives, the engineering and development program, design features, and several manufacturing techniques for this engine.
Technical Paper

DEVELOPMENT AND EVALUATION OF AUTOMOBILE EXHAUST CATALYTIC CONVERTER SYSTEMS

1962-01-01
620397
For the past seven years, the Ford Motor Company has been working on the development of catalytic exhaust treating systems designed to minimize the emission of certain vehicle exhaust gas constituents. In 1959, the development of a low-temperature, catalytic-converter system for the oxidation of exhaust gas hydrocarbons was described in a paper presented to the SAE. That system, which used vanadium pentoxide as the catalyst, has since been extensively developed in a program that included 250,000 miles of converter evaluation on vehicles. Many of the basic system requirements and problems covered in those tests are relevant in vehicle applications of a catalytic converter system with any type of catalyst. With the insertion of a carbon monoxide limit in the California Exhaust Standard, work on the low-temperature, catalytic converter system was discontinued since this system did not, and was not designed to, oxidize carbon monoxide.
X